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The problem of diffusion in a one-compartment cell, where a horizontal diafragm separates 
a solution of known concentration from one whose concentration is kept constant, was solved 
under the assumption of a pseudo stationary state. Approximate equations were obtained for the 
calculation of the mean concentration at which the experimental value of the diffusion coefficient 
is equal to the actual one. By solving the second Fick's law for this case it was shown that the 
time of attainment of the pseudo stationary state need not be considered in the calculations, 
especially when the duration of the diffusion measurement and calibration is inversely proportional 
to the corresponding diffusion coefficients. 

The diafragm method is most often used in the determination of diffusion coefficients 
in binary liquid systems1 ,2. 

In the classical setup according to Stokes3, the diffusion takes place in a diafragm which 
separates the diffusion cell into two parts filled with solutions differing in their concentration. 
The diffusion coefficient can be calculated from the time changes of the concentrations if the 
so-called constant of the diffusion cell is known. This geometric parameter is obtained by calibra
tion with a solution of a known diffusion coefficient. Substantial contributions to the theory 
of the diafragm method were made by Barnes4 (general solution for diffusion in the diafragm 
at a constant diffusion coefficient and zero volume ~hanges during mixing), Gordon5 (solution 
for diffusion in the diafragm assuming a pseudostationary state, the diffusion coefficient de
pending on the concentration, and zero volume changes during mixing), and Robinson and co
workers6 (general solution for diffusion through the diafragm assuming only a pseudostationary 
state). The latter two methods of calculation are used in the determination of diffusion coefficients 
depending on concentration. MiIIs and coworkers 7 showed on the basis qf the results of Barnes4 

and Holmes8 that the preliminary period necessary to attain a pseudostationary state can be 
neglected in the calculations if the same procedure is used both in calibrating the diffusion cell, 
and in the diffusion measurement proper. 

For the determination of diffusion coefficients, also a diffusion cell with one compartment 
can be used, where a horizontal diafragm separates the solution of a known concentration from 
one whose concentration is kept constant. In this setup, the classical procedure with a preliminary 
period cannot be used9 unless the diafragm is very thin or the concentration changes are recorded 
continually10 -13. 

The subject of the present work is the theory of the diafragm method with a one
-compartment diffusion cell. Mter introducing general equations, the problem 

Q 
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of diffusion in the diafragm is solved for the most general case under the only as
sumption of a pseudostationary state and the results following from additional 
assumptions are discussed. The theory of a simplified diafragm method applied 
to a diffusion cell with one compartment is derived in another chapter. 

THEORETICAL 

General Equations 

The mathematical model of the one-compartment diffusion cell is based on similar 
assumptions as with the classical Stokes' two-compartment ce1l3

,5,6. The first Fick's 
law for one-dimensional binary diffusion in liquids14 (subscript 1 refers to the sol
vent, 2 to the solute) reads 

(1) 

where D denotes binary diffusion coefficient, which depends generally on the solute 
concentration C2' The molar diffusion flux of species i is defined as 

(2) 

where Vj is the velocity of species i of molar concentration Cj and v means volume 
average velocity defined as 

(3) 

171 and 172 are partial molar volumes of species 1 and 2. We have obviously 

(4) 

and by using the Gibbs-Duhem relation (c 1 dV1 + C2 dV2 = 0) 

(5) 

whence 

(6) 

From the above equations we obtain the flux of species 2 in the diafragm: 

(7) 
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The diafragm has an effective cross section s, effective thickness 1 and volume 

y"' = sl. (8) 

The diafragm closes the compartment (') of constant volume V' with concentrations 
c~ and c; which are functions only of time and separates it from the external solu
tion of volume V" (compartment (")) with constant concentrations c~ and c;. This 
can be achieved, e.g., by choosing V" ~ Y' so that the time changes of c~ and c; 
are negligible. The positive z coordinate is oriented from the compartment (') toward 
(") perpendicular to the diafragm. The mass balance of species 1 and 2 in the com
partment (') leads to the relation 

-d(c;V')!dt = s c;v;, i = 1,2, (9) 

where t denotes time and v; velocities of the components on the interface between 
the diafragm and the compartment ('). 

The general solution of this problem, i.e., of the differential equations obtained 
by introducing the constitutive equations (1) and (7) into the continuity equations 
for species in the diafragm 

(10) 

is not known. Therefore, we restrict ourselves to two special cases discussed below. 

Theory Assuming a Pseudostationary State 

This assumption enables to find a solution for the most general case, where the ·dif
fusion coefficients are dependent on the concentration and the volume changes 
during mixing are accounted for 5

,6. 

The diafragm and the compartment (') are filled with a solution of an equal con
centration and during a preliminary period a pseudostationary state is reached in the 
diafragm, i.e., the concentration distribution in the diafragm is practically inde
pendent of time. A rapid attainment of this state is facilitated by a suitable con
struction of the diffusion cell as will be shown later. According to Eq. (10), the 
fluxes CjV j with respect to the cell are practically independent of the coordinate z 
in the diafragm and the pseudostationary state can be defined so that the species 
fluxes CjV j (i = 1,2) are independent of the position, z, in the diafragm6

• Since the 
volume of the compartment (') is constant, 

dV'!dt = 0, (11) 

Collection Czechoslov. Chern. Cornrnun. [Vol. 42] [1977] 



2598 Sipek, SamohyJ, Pick: 

Eq. (5) for this compartment takes the form 

v; dc~/dt + v; dc~/dt = 0, (12) 

where V; and V; are partial molar volumes of species 1 and 2 in the compartment ('). 
By combining Eqs (9), (11) and (12) we obtain 

(13) 

where the second equality follows from the definition of the pseudostationary 
state for an arbitrary position in the diafragm. By combining Eqs (7) and (13) for the 
solute (i = 2) we obtain 

(14) 

where the function G is defined as 

(15) 

and can be obtained from the known dependence of the partial molar volumes 
on the concentration. 

For a pseudostationary state, we can define the following function independent 
of the coordinate: 

(16) 

On introducing Eq. (16) into (14) we obtain a differential equation which can be 
after separation of variables integrated from z = 0 to z = 1 to give 

(17) 

On the other hand, introducing Eq. (16) into (9) for i = 2 and considering V' 
and c~ constant we obtain after rearrangement the so-called logarithmic formula 
of the diafragm method in the differential form: 

-d In (c~ - cD/dt = 1315, (18) 

where the cell constant 13 is defined by 

13 = s/lV' (19) 
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and it depends only on the geometry of the diffusion cell with one ' compartment. 
It should be noted that with a two-compartment diffusion cell P is not constant since 
it depends also on V" which can change during the measurement6

• 

The resulting Eqs (17) and (18) can be used in determining diffusion coefficients 
in a one-compartment diffusion cell in a pseudostationary state. The dependence 
of c~ on time is obtained by continual analysis, c; is known, and from Eq. (18) 
the function 15(c~, c;) is found, from which, e.g., by solving integral Eq. (17) numeri
cally the values of D(c2 ) are obtained (provided that the function (15) is known for the 
system under study), or an iteration method can be used which will be described 
below. The necessary constant p can be determined analogously by aIi inverse 
procedure from the measurement of a system for which the diffusion coefficient 
as a function of the concentration, D( C2) , and the function (15) are known. 

It is, however, a more common case that the continual analysis cannot be used 
and only the concentrations (c~)o at the beginning of the measurement at time to 
and (C~)f at the end at time tf together with c~ = const. are known. From these 
data the value of 15 defined as 

(20) 

can be obtained, where 

(21), (22) 

To obtain a relation between 15 and the diffusion coefficient D(c2 ), we define 

i1c = C2 - c~ (23) 

analogously to the preceding equations, and the dependence of D on the concentra
tion can be written in the form 

D(c2 ) = D(c~) [(1 + j(i1c)] , (24) 

where j(O) = O. We now define a function, F(i1c' , cD as 

1/[1 + F(i1c', c~)] = (l/i1c') r22,~ {[1 + j(C2 - cm/[l - G(c2, c~)]} dC2 (25) 

where, analogously to Eq. (23) 

i1c' = c; - c~ . (26) 
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From Eqs (25), (24) and (17) follows 

D(c;)j15 = 1 + F(Ac', c~), (27) 

which we introduce into Eq. (18) and after separation of variables and integration 
from (Ac')o to (AC')f with respect to Eq. (20) obtain 

f
(dC'Jr 

15 = D(c~) + [ljP(t f - to)] [F(Ac', c~)jAc'] d Ac' . 
(dC')o 

(28) 

From the measurement of the dependence of 15 on (c;)o and (C;)f at c~ = const. 
according to Eq. (20) the dependence of D on C2 can be obtained by an iteration 
methods.6 consisting in the determination of such values of C2 at which D = 15. 
The constant P can be found from the measurement of a system where the dependence 
of D on C2 together with the function G is known, since 15 can be calculated from 
Eqs (24), (25) and (28), and 15p can be found experimentally with the aid of Eq. (20). 

The given problem is simplified if the volume changes during mixing are negligible. 
In this case the partial molar volumes of the components are independent of the 
concentration and according to Eq. (15) G = O. In the case of a pseudo stationary . 
state, even a weaker assumption is sufficient, namely that the ratio of partial molar 
volumes of both components is independent of their concentration in the studied 
interval <c~; (c;)o>. Then 15 is the integral diffusion coefficient and can be determined 
directly from Eq; (18) on the basis of a diffusion measurement with continual ana
lysis. 

Another simplification of the calculation is an approximation of Eq. (26) proposed 
by Gordons, namely (compare Eqs (21) and (22») 

!J.c' = Ac;" = t[(AC')f + (Ac')o] . (29) 

In this case, F = F(Ac;") = const. and we obtain from Eqs (20), (25), (27), and (28) 

(30) 

whereby the iteration process is considerably simplified. 
However, we shall show how the iteration process can be eliminated and still 

useful results obtained. First we shall neglect the volume changes during mixing 
(G = 0). 

If the diffusion. coefficient does not depend on the concentration, then 

(31) 

since the functions f and Fare identifically equal to zero. 
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If we assume that in the concentration interval (c;; (c;)o> D(C2) is a linear function 
of C2 

(32) 

where D" = D(cD and b is a constant, then (with G = 0) it follows from Eq. (17) 
that 

D(c;, cn = t D(c; + c;) . (33) 

This means that by the measurement with a continual analysis we obtain with the 
use of Eq. (18) the diffusion coefficient corresponding to a mean concentration 
t (c; + c;). In this case we obtain from Eqs (25) and (28) 

15 = D" - [l//3(tf - to)] In {[1 + (Llc')r bI2D"]/[1 + (LlC')o bI2D"]} . (34) 

From this equation we obtain an approximate expression for the calculation of the 
mean concentration, cs ' at which the experimental 15 value is equal to D: 

15 = D(cs) = D" + b(cs - c;) . (35) 

On introducing Eq. (35) into (34) and considering (20) we obtain after rearrangement 

where 

(37) 

Assuming that Do does not differ too much from Dc, we can use the following ap
proximation: 

In (Dr/Do) ~ (bI2D") [(c~)c - (c;)o] [1 - (bID") (cM - c;)], (38) 

where 

(39) 

On introducing Eq. (38) into (36) we obtain the result 

(40) 

which approximates the sought concentration Cs at which the value of 15 is equal 

Collection Czechoslov. Chem. Commun. [Vol. 42] [1977] 



2602 Sipek, Samohyl, Pick: 

to the diffusion coefficient D. If the diffusion measurement does not last too long, 
we can expand the logarithm in Eq. (40) into series to obtain 

(41) 

It should be noted that with the use of Eq. (30) we obtain for the case of the linear 
dependence of D on concentration (32) also Eq. (41). 

The mentioned relations were derived under the assumption that a pseudostationary 
state is attained, to which the values of to and (c;)o are assigned. The determination 
of these quantities is difficult especially in a one-compartment diffusion cell. As men
tioned in the introductory part, this difficulty can be overcome by using the simplified 
diafragm method7

• 

Theory of the Simplified Diafragm Method 

We shall apply the idea of the simplified diafragm method7 to a one-compartment 
diffusion cell. As will be apparent from what follows, we nee,d not consider the time 
of attainment of the pseudostationary state since we compensate the error thus 
formed by the same manner of filling the diffusion cell during both the calibration 
and the measurement proper. To this end we need to know the exact solution of the 
problem of diffusion through the diafragm, which is possible only for a constant 
diffusion coefficient and zero reference velocity by the method according to Barnes4

• 

This will obviously be a good approximation if the diffusion coefficient is only little 
variable in the concentration range under study and the volume changes during 
mixing are small. 

At the beginning of the measurement or calibration at t = 0, the diffusion cell 
of volume V' with a fritted glass disc of volume VIII is filled with the solution of con
centration (c;)oo and dipped in a bath of volume V" with a constant concentration 
c~. First we shall show that th~ assumption of zero reference velocity is practically 
fulfilled. On deriving Eq. (9), mUltiplying by Vi' summing over i = 1, 2 and using 
Eqs (3), (4) and (12) we obtain 

dV'!dt = SV' , (42) 

where v'is the volume average velocity v, defined by Eq. (3), at a volume V'. 
With respect to Eq. (11) we have 

v' = 0 , (43) 

i.e., the reference velocity at the surface of the diafragm connected with a closed 
volume V'is equal to zero. 
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The change of the reference velocity with height can be found by differentiating 
Eq. (3) with respect to z and using Eqs (1)-(6): 

(44) 

It is apparent from this equation that the reference velocity does not change with 
height as long as the partial molar volumes of the components are independent of the 
concentration (no volume changes during mixing), and with this assumption the 
volume average velocity is according to Eq. (43) equal to zero throughout in the 
diafragm. 

The diffusion flux (2) is thereby reduced to the flux with respect to the apparatus, 
CiVj, and we have 

(45) 

By introducing this equation into (10) with the assumption of a constant diffusion 
coefficient, the given problem is reduced to the second Fick's law 

(46) 

which with regard to the mentioned manner of filling the diffusion cell is to be 
solved with the following boundary and initial conditions: 

t ~ ° c2(0, t) = c~(t) , cAl , t) = ci = const. , 

° ;;;; z ;;;; 1 : c2(z, 0) = (c~)oo . (47) 

The diafragm surface contacting the volume V' corresponds to z = 0, that con
tacting V" to z = 1; the measurement (or calibration) begins at t = 0. 

The obtained solution c2(z, t) is introduced into the balance equation obtained 
from Eqs (9) and (46): 

(48) 

whereby the following equation is obtained, which expresses the molar concentration 
c~ in the diffusion cell as a function of time and the cell geometry: 

c~ = c~ + [(c~)oo - cn {(1 + A/6 - 7).2/120 + .. . ) exp [ -PDt(1 - A/3 + 
a) 

+ 4A2 /45 + ... )] + I [( -ly 2Aji2n2 ](1 - 3).ji2n2 + ... ) . 
i=l 

(49) 
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Here the quantity {3 is defined by Eq. (19), and 

A = V"'/V' (50) 

is a parameter whose value is small owing to the common condition of the cell con
struction, V' ~ VIII. The derivation of the above equation, analogous to the Barnes' 
work4

, was given in detail elsewhere9
. 

The sum in Eq. (49) converges rapidly to zero, so that its value becomes negligible 
at a time to which corresponds to the attainment of the pseudo stationary state. 
At this state, indeed, Eq. (49) takes after neglecting the terms with A2 and rearrange
ment the form 

(51) 

where 

f3 = {3(1 - A/3) (52) 

and {3 is defined by Eq. (19). The time values of to and tr correspond to the concentra
tions(c;)o and (c~)r; (Ac')o and (Ac')r are defined by Eqs (21) and (22). 
Eq. (51) is practically identical with (20) for a constant diffusion coefficient and zero 
reference velocity. The difference due to the factor of (1 - A/3) in (52) is not im
portant since f3 or {3 is determined experimentally by calibration of the diffusion 
cell. For a sufficiently long time of the diffusion (tc > to), it is possible to write 
Eq. (49) after neglecting the whole sum and the terms with A2 in the form 

(53) 

where 

(54) 

This equation enables to use the simplified diafragm method for a diffusion cell 
with one compartment. It is analogous to that derived by Holmes8 and MiIls with 
coworkers 7 for the calculation of D in the simplified diafragm method with a two
-compartment diffusion cell. 

Eq. (53) can be in the first approximation rewritten in the form 

(55) 

The last term represents a correction for the case where the diffusion measurement 
commences from the beginning of the experiment at t = O. (Compare with Eq. (51).) 
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Eq. (55) shows that the logarithmic formula of the diafragm method can be used 
in the simplified diafragm method when, e.g., the following procedure is observed: 

a) The diffusion measurement is carried out for such a long time that the cor
rection term in Eq. (55) is negligible. For example, at the optimum time of diffusion 
(calculated analogously as in ref. 6 for a one-compartment diffusion cell) neglecting 
of the correction term in (55) results in an error lying, as a rule, within the limits 
of error of the determination of diffusion coefficients by the diafragm method. 

b) The time of the diffusion measurement and calibration is chosen inversely pro
portional to the ratio of the corresponding diffusion coefficients, as can be derived 
from what follows. 

We denote the time for which the calibration is carried out as tr 1 and according 
to Eq. (55) we have . 

(56) 

The diffusion coefficient of the system used for calibration is denoted as D 1 • We define 

(57) 

and we denote as D* the diffusion coefficient calculated from the logarithmic formula: 

(58) 

Then we have with respect to Eqs (55)-(58): 

(5.9), (60) 

whence 

(61) 

From this equation it can be concluded that if 

(62) 

the diffusion coefficient D* calculated according to Eq. (58) will be equal to the dif
fusion coefficient D. The expression in brackets in Eq. (61) enables to estimate the 
error due to neglecting the mentioned condition. 
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CONCLUSIONS 

It follows from the last section that the simplified diafragm method can be applied 
also to the one-compartment diffusion cell, especially if th~ time of measurement 
and calibration is inversely proportional to the corresponding diffusion coefficients. 
Such a prQcedure enables to use the results from the preceding section even if the 
time of attainment of the pseudostationary state, to, is not considered and the values 
corresponding to the very beginning of the measurement at t = 0 are introduced 
into the derived equations. The derived expressions (40) and (41) enable to estimate 
with a sufficient accuracy the concentration at which the value of 15 after Eq. (20) 
is equal to the diffusion coefficient D. The error due to the determination of the 
diffusion coefficient by the simplified diafragm method can be easily estimated from 
the mentioned equations. An experimental verification of this metb,od will be the 
subject of a subsequent work. 

REFERENCES 

1. Jost W.: Diffusion in Solids, Liquids, and Gases. Academic Press, New York 1960. 
2. Tyrell H. J. Y.: Diffusion and Heat Flow in Liquids. Butterworth, London 1961. 
3. Stokes R. H.: J. Amer. Chern. Soc. 72, 763 (1950). 
4. Barnes c.: Physics 5, 4 (1934). 
5. Gordon A. R.: Ann. N. Y. Acad. Sci. 46, 285 (1945). 
6. Robinson R. L., Edmister W. c., Dullien F. A. L.: J. Phys. Chern. 69, 258 (1965). 
7. Mills R ., Woolf L. A., Watts R. 0.: AICHE J. 14, 671 (1968). 
8. Holmes J. T.: Rev. Sci. Instrum. 36, 831 (1965). 
9. Sipek M.: Thesis . Institute of Chemical Technology, Prague 1973. 

10. Hashitani T.: Sci. Papers of Inst. Phys. Chern. Research, Tokyo 61, 139 (1967). 
11. Hashitani T. , Tamamushi R.: Trans. Faraday Soc. 63, 369 (1967). 
12. Tanaka K., Hashitani T., Tamamushi R.: Trans. Faraday Soc. 66, 74 (1970). 
13. Hartley G. S., Runnic1es D . F .: Proc. Roy. Soc. Ser. A 168, 401 (1938). 
14. Lightfoot E. N. , Cussler E. L.: Chern. Eng. Progr., Symp. Ser. 61, 66 (1965). 

Translated by K. Micka. 

Collection Czechoslov . Chern. Comrnun . [Vol. 42) (1977) 




